удельное сопротивление грунта таблица пуэ

Расчет защитного заземления

Расчет заземления производится для того чтобы определить сопротивление сооружаемого контура заземления при эксплуатации, его размеры и форму. Как известно, контур заземления состоит из вертикальных заземлителей, горизонтальных заземлителей и заземляющего проводника. Вертикальные заземлители вбиваются в почву на определенную глубину.

Горизонтальные заземлители соединяют между собой вертикальные заземлители. Заземляющий проводник соединяет контур заземления непосредственно с электрощитом.

Размеры и количество этих заземлителей, расстояние между ними, удельное сопротивление грунта – все эти параметры напрямую зависят на сопротивление заземления.

К чему сводится расчет заземления?

Заземление служит для снижения напряжения прикосновения до безопасной величины. Благодаря заземлению опасный потенциал уходит в землю тем самым, защищая человека от поражения электрическим током.

Величина тока стекания в землю зависит от сопротивления заземляющего контура. Чем сопротивление будет меньше, тем величина опасного потенциала на корпусе поврежденной электроустановки будет меньше.

Заземляющие устройства должны удовлетворять возложенным на них определенным требованиям, а именно величины сопротивление растекания токов и распределения опасного потенциала.

Поэтому основной расчет защитного заземления сводится к определению сопротивления растекания тока заземлителя. Это сопротивление зависит от размеров и количества заземляющих проводников, расстояния между ними, глубины их заложения и проводимости грунта.

Исходные данные для расчета заземления

1. Основные условия, которых необходимо придерживаться при сооружении заземляющих устройств это размеры заземлителей.

1.1. В зависимости от используемого материала (уголок, полоса, круглая сталь) минимальные размеры заземлителей должны быть не меньше:

  • а) полоса 12х4 – 48 мм2;
  • б) уголок 4х4;
  • в) круглая сталь – 10 мм2;
  • г) стальная труба (толщина стенки) – 3.5 мм.

Минимальные размеры арматуры применяемые для монтажа заземляющих устройств

1.2. Длина заземляющего стержня должна быть не меньше 1.5 – 2 м.

1.3. Расстояния между заземляющими стержнями берется из соотношения их длины, то есть: a = 1хL; a = 2хL; a = 3хL.

В зависимости от позволяющей площади и удобства монтажа заземляющие стрежни можно размещать в ряд, либо в виде какой ни будь фигуры (треугольник, квадрат и т.п.).

Цель расчета защитного заземления.

Основной целью расчета заземления является определить число заземляющих стержней и длину полосы, которая их соединяет.

Пример расчета заземления

Сопротивление растекания тока одного вертикального заземлителя (стержня):

где – ρэкв — эквивалентное удельное сопротивление грунта, Ом·м; L – длина стержня, м; d – его диаметр, м; Т – расстояние от поверхности земли до середины стержня, м.

В случае установки заземляющего устройства в неоднородный грунт (двухслойный), эквивалентное удельное сопротивление грунта находится по формуле:

где – Ψ — сезонный климатический коэффициент (таблица 2); ρ1, ρ2 – удельное сопротивления верхнего и нижнего слоя грунта соответственно, Ом·м (таблица 1); Н – толщина верхнего слоя грунта, м; t — заглубление вертикального заземлителя (глубина траншеи) t = 0.7 м.

Так как удельное сопротивление грунта зависит от его влажности, для стабильности сопротивления заземлителя и уменьшения на него влияния климатических условий, заземлитель размещают на глубине не менее 0.7 м.

Таблица для устройства и расчётов заземляющих контуров

Большинство электроприборов не могут быть использованы без предварительного заземления. Эта процедура, состоящая из нескольких этапов, требует тщательной подготовки. В ходе такой подготовки необходимо провести расчёт заземляющего устройства, который поможет исключить ошибки в процессе выбора и установки заземляющей конструкции.

Необходимость заземления

Несмотря на всю важность, расчёт защитного заземления и его установка стали обязательными относительно недавно. Ещё несколько десятилетий назад при обеспечении электроэнергией деревянных жилых домов проводили только нулевой провод и фазу, в то время как на производствах с целью обеспечения безопасности уже использовали заземление и зануление оборудования. В основе этих процессов лежит понятие нейтрали.

Этим термином в электрике принято обозначать место схождения трёх фаз, соединённых звездой. Вместе с заземлением эта точка образует глухозаземлённую нейтраль трансформатора. Чтобы заземлить электроприборы, их нужно соединить с нейтралью посредством специально приваренной шины. Для зануления оборудования нейтраль требуется соединить с нулевой шиной.

Сегодня в жилых и общественных зданиях заземляют водопроводные, канализационные, газопроводные трубы, а также распределительные электрощитки. Защитное заземление создают путём соединения с землёй металлических, не проводящих ток конструкций, которые могут оказаться под напряжением. Оно является обязательным для сетей:

  • Переменного тока — при напряжении от 380 В.
  • Постоянного тока — при напряжении от 440 В.

В наружных установках и помещениях повышенной опасности заземляющие конструкции устанавливаются при напряжении выше 42 В для переменного тока и выше 110 В — для постоянного. Помещения, в которых существует риск возникновения взрыва, заземляются при любом уровне напряжения.

Виды заземляющих конструкций

Расчёт заземления следует проводить с учётом того, где оно будет располагаться. По месту расположения заземляющая конструкция может быть:

  • Выносной. Заземлитель устанавливается за пределами площади, на которой находятся приборы, нуждающиеся в отведении электрического заряда.
  • Контурной. Электроды размещаются по контуру площади с оборудованием, а также внутри неё.

Заземление приборов, находящихся в закрытых помещениях, осуществляется путём прокладывания специальных магистралей для укладки проводов. Если электрооборудование располагается на открытой местности, необходимости в оборудовании магистралей нет, корпусы приборов могут соединяться с заземлительным контуром напрямую с помощью кабеля.

В качестве основных деталей в контурах могут использоваться естественные и искусственные заземлители. К первому типу относятся:

  • металлические корпуса зданий, соединённые с землёй;
  • свинцовые оболочки кабелей, колодцев, скважин;
  • подземные металлические коммуникации (кроме труб теплотрасс и магистралей для взрывчатых и горючих веществ).

Для отведения заряда от распределительных устройств и подстанций естественным путём обычно используются опоры отводящих воздушных линий электропередач. В качестве соединительных элементов в таких случаях выступают громозащитные тросы.

Когда возможность использования естественных элементов заземления отсутствует или они не дают нужного результата, их заменяют стержнями из угловой стали, стальными трубами или прутьями из стали.

Все заземлители искусственного типа должны иметь определённые размеры, которые следует учитывать, проводя расчёт контура заземления. В противном случае их использование не принесёт результата.

Расчёт сопротивления

Правильный расчёт защитного заземления заключается в точном определении сопротивления растекания тока (Rз), которое зависит от множества факторов (влажности и плотности грунта, количества солей, конструктивных особенностей заземлительного устройства, диаметра и глубины погружения подключённого провода и др.).

Работа заземлительного контура характеризуется шаговым напряжением и напряжением прикосновения. Чтобы эксплуатация электрического оборудования была безопасна для человека, эти параметры не должны превышать установленных значений.

Их снижение достигается путём уменьшения сопротивления растекания тока. Результатом такого снижения является уменьшение тока, проходящего сквозь тело человека при аварии.

В процессе расчёта заземления необходимо учитывать такой важный показатель, как удельное сопротивление грунта. Таблица ПУЭ позволяет узнать его для разных видов почвы:

  1. Песка с разным уровнем залегания подземных вод.
  2. Водонасыщенной супеси (пластинчатой и текучей).
  3. Пластичной и полутвёрдой глины.
  4. Суглинка.
  5. Торфа.
  6. Садовой земли.
  7. Чернозёма.
  8. Кокса.
  9. Гранита.
  10. Каменного угля.
  11. Мела.
  12. Глинистого мергеля.
  13. Пористого известняка.

Все представленные в таблице разновидности грунта отличаются разным уровнем влажности, которая также сказывается на конечном значении сопротивления растекания тока. Для его точного определения удельное сопротивление умножают на коэффициент сезонности. Эта цифра зависит от низшей температуры и способа расположения электродов (вертикального или горизонтального).

Помимо удельного сопротивления почвы (ρ), для подсчёта сопротивления растекания (Rз) необходимо знать длину электрода (l), диаметр прута (d) и глубину расположения средней точки заземлителя (h). Взаимосвязь этих величин отражается в формуле Rз = ρ/2πl∙ (ln (2l/d)+0.5ln ((4h+l)/(4h-l)).

Если основой заземлительной установки являются сваренные сверху вертикальные электроды (n), целесообразнее будет использовать формулу Rn = Rз/(n∙ Kисп), в которой буквами Kисп обозначается коэффициент использования электрода (с учётов влияния соседних). Его также легко найти в специальной таблице.

Независимо от выбранной формулы, при подсчёте защитного заземления следует принимать во внимание нормированное сопротивление заземлителя (для частного дома, источника тока или подстанции), размеры основных деталей конструкции и соединительных элементов, а также количество и метод соединения электродов (в ряд или в форме замкнутого контура).

Проводить расчёт заземлительного контура имеет смысл только в том случае, если в качестве заземлителей используются искусственные элементы. Формул для определения сопротивления естественных заземлителей не существует.

Расчёт заземления и его особенности

Важнейшей функцией заземления является электробезопасность. Перед его установкой в частном доме, на подстанции и в других местах необходимо произвести расчёт заземления.

Как выглядит заземление частного дома

Электрический контакт с землёй создаёт погруженная в грунт металлическая конструкция из электродов вместе с подключёнными проводами – всё это представляет собой заземляющее устройство (ЗУ).

Места соединения с ЗУ проводника, защитного провода или экрана кабеля называются точками заземления. На рисунке ниже изображено заземление из одного вертикального металлического проводника длиной 2500 мм, вкопанного в землю. Его верхняя часть размещается на глубине 750 мм в траншее, ширина которой в нижней части составляет 500 мм и в верхней – 800 мм. Проводник может быть связан сваркой с другими такими же заземлителями в контур горизонтальными пластинами.

Вид простейшего заземления помещения

После монтажа заземлителя траншея засыпается грунтом, а один из электродов должен выходить наружу. К нему подключается провод над поверхностью земли, который идет к шине заземления в электрощите управления.

При нахождении оборудования в нормальных условиях на точках заземления напряжение будет нулевым. В идеальном случае при коротком замыкании сопротивление ЗУ будет равно нулю.

При возникновении в заземлённой точке потенциала, должно произойти его зануление. Если рассмотреть любой пример расчёта, можно увидеть, что ток короткого замыкания Iз имеет определенную величину и не может быть бесконечно большим. Грунт обладает сопротивлением растекания тока Rз от точек с нулевым потенциалом до заземлителя:

Решение задачи правильного расчёта заземления особенно важно для электростанции или подстанции, где сосредоточено много оборудования, работающего под высоким напряжением.

Величина Rз определяется характеристиками окружающего грунта: влажностью, плотностью, содержанием солей. Здесь также важными параметрами являются конструкции заземлителей, глубина погружения и диаметр подключённого провода, который должен быть таким же, как у жил электропроводки. Минимальное поперечное сечение голого медного провода составляет 4 мм 2 , а изолированного – 1,5 мм 2 .

Если фазный провод коснётся корпуса электроприбора, падение напряжения на нём определяется величинами Rз и максимально возможного тока. Напряжение прикосновения Uпр всегда будет меньше, чем Uз, поскольку его снижают обувь и одежда человека, а также расстояние до заземлителей.

На поверхности земли, где растекается ток, также существует разность потенциалов. Если она высокая, человек может попасть под шаговое напряжение Uш опасное для жизни. Чем дальше от заземлителей, тем оно меньше.

Величина Uз должна иметь допустимое значение, чтобы обеспечить безопасность человека.

Снизить величины Uпр и Uш можно, если уменьшить Rз, за счёт чего также уменьшится ток, протекающий через тело человека.

Если напряжение электроустановки превышает 1 кВ (пример – подстанции на промышленных предприятиях), создаётся подземное сооружение из замкнутого контура в виде рядов металлических стержней, забитых в землю и соединённых сваркой между собой при помощи стальных полос. За счёт этого производится выравнивание потенциалов между смежными точками поверхности.

Безопасная работа с электросетями обеспечивается не только за счёт наличия заземления электроприборов. Для этого ещё необходимы предохранители, автоматические выключатели и УЗО.

Заземление не только обеспечивает разность потенциалов до безопасного уровня, но и создаёт ток утечки, которого должно хватать для срабатывания защитных средств.

Соединять с заземлителем каждый электроприбор нецелесообразно. Подключения производят через шину, расположенную в квартирном щитке. Вводом для неё служит провод заземления или провод РЕ, проложенный от подстанции к потребителю, например, через систему TN-S.

Расчёт заземляющего устройства

Расчёт заключается в определении Rз. Для этого необходимо знать удельное сопротивление грунта ρ, измеряемое в Ом*м. За основу принимают его средние значения, которые сводят в таблицу.

Определение удельного сопротивления грунта

Из приведённых в таблице значений видно, что значение ρ зависит не только от состава грунта, но и от влажности.

Кроме того, табличные величины удельных сопротивлений умножают на коэффициент сезонности Kм, учитывающий промерзание грунта. В зависимости от низшей температуры ( 0 С) его значения могут быть следующими:

Значения коэффициента Kм зависят от способа заложения заземлителей. В числителе приведены его значения при вертикальном погружении заземлителей (с заложением вершин на глубине 0,5-0,7 м), а в знаменателе – при горизонтальном расположении (на глубине 0,3-0,8 м).

На выбранном участке ρ грунта может существенно отличаться от средних табличных значений из-за техногенных или природных факторов.

Когда проводятся ориентировочные расчёты, для одиночного вертикально заземлителя Rз ≈ 0,3∙ρ∙ Kм.

Точный расчёт защитного заземления производят по формуле:

Rз = ρ/2πl∙ (ln(2l/d)+0.5ln((4h+l)/(4h-l)), где:

  • l – длина электрода;
  • d – диаметр прута;
  • h – глубина залегания средней точки заземлителей.

Для n вертикальных электродов, соединённых сверху сваркой Rn = Rз/(n∙ Kисп), где Kисп – коэффициент использования электрода, учитывающий экранирующее влияние соседних (определяется по таблице).

Расположение заземляющих электродов

Формул расчёта заземления существует много. Целесообразно применять метод для искусственных заземлителей с геометрическими характеристиками в соответствии с ПУЭ. Напряжение питания составляет 380 В для трёхфазного источника тока или 220 В однофазного.

Нормированное сопротивление заземлителя, на которое следует ориентироваться, составляет не более 30 Ом для частных домов, 4 Ом – для источника тока при напряжении 380 В, а для подстанции 110 кВ – 0,5 Ом.

Для группового ЗУ выбирается горячекатаный уголок с полкой не менее 50 мм. В качестве горизонтальных соединительных перемычек используется полоса сечением 40х4 мм.

Определившись с составом грунта, по таблице выбирается его удельное сопротивление. В соответствии с регионом, подбирается повышающий коэффициент сезонности Kм.

Выбирается количество и способ расположения электродов ЗУ. Они могут быть установлены в ряд или в виде замкнутого контура.

Замкнутый контур заземления в частном доме

При этом возникает их экранирующее влияние друг на друга. Оно тем больше, чем ближе расположены заземлители. Значения коэффициентов использования заземлителей Kисп для контура или расположенных в ряд, отличаются.

Значения коэффициента Kисп при разных расположениях электродов

Влияние горизонтальных перемычек незначительно и в оценочных расчётах может не учитываться.

Примеры расчёта контура заземления

Для лучшего освоения методов расчёта заземления лучше рассмотреть пример, а лучше – несколько.

Заземлители часто делают своими руками из стального уголка 50х50 мм длиной 2,5 м. Расстояние между ними выбирается равным длине – h=2.5м. Для глинистого грунта ρ = 60 Ом∙м. Коэффициент сезонности для средней полосы, выбранный по таблицам, равен 1,45. С его учётом ρ = 60∙1,45 = 87 Ом∙м.

Для заземления по контуру роется траншея глубиной 0,5 м и в дно забивается уголок.

Размер полки уголка приводится к условному диаметру электрода:

d = 0.95∙p = 0.995∙0.05 = 87 Ом∙м.

Глубина залегания средней точки уголка составит:

h = 0,5l+t = 0.5∙2.5+0.5 = 1.75 м.

Подставив значения в ранее приведённую формулу, можно определить сопротивление одного заземлителя: R = 27.58 Ом.

По приближенной формуле R = 0.3∙87 = 26.1 Ом. Из расчёта следует, что одного стержня будет явно недостаточно, поскольку по требованиям ПУЭ величина нормированного сопротивления составляет Rнорм = 4 Ом (для напряжения сети 220 В).

Количество электродов определяется методом приближения по формуле:

Здесь вначале принимается kисп = 1. По таблицам находим для 7 заземлителей kисп = 0,59. Если подставить это значение в предыдущую формулу и снова пересчитать, получится количество электродов n = 12 шт. Затем производится новый перерасчёт для 12 электродов, где опять по таблице находится kисп = 0,54. Подставив это значение в ту же формулу, получим n = 13.

Таким образом, для 13 уголков Rn = Rз/(n*η) = 27,58/(13∙0,53) = 4 Ом.

Нужно изготовить искусственное заземление с сопротивлением Rнорм = 4 Ом, если ρ = 110 Ом∙м.

Заземлитель изготавливается из стержней диаметром 12 мм и длиной 5 м. Коэффициент сезонности по таблице равен 1,35. Ещё можно учесть состояние грунта kг. Измерения его сопротивления производились в засушливый период. Поэтому коэффициент составил kг =0,95.

На основе полученных данных за расчётное значение удельного сопротивления земли принимается следующая величина:

ρ = 1,35∙0,95∙110 = 141 Ом∙м.

Для одиночного стержня R = ρ/l = 141/5 = 28,2 Ом.

Электроды располагаются в ряд. Расстояние между ними должно быть не меньше длины. Тогда коэффициент использования составит по таблицам: kисп = 0,56.

Находим число стержней для получения Rнорм = 4 Ом:

После монтажа заземления производятся измерения электрических параметров на месте. Если фактическое значение R получается выше, ещё добавляются электроды.

Если рядом находятся естественные заземлители, их можно использовать.

Особенно часто это делается на подстанции, где требуется самая низкая величина R. Оборудование здесь используется максимально: подземные трубопроводы, опоры линий электропередач и др. Если этого недостаточно, добавляется искусственное заземление.

Естественное заземление на даче через арматуру фундамента

Устройство размещается внутри фундамента, где шина для подключения выводится наружу.

Любой приведённый пример можно использовать как алгоритм расчёта. При этом для оценки правильности может быть применена онлайн-программа.

Как выглядит онлайн-программа, с помощью которой можно рассчитать заземление

Самостоятельные расчёты заземления являются оценочными. После его монтажа следует произвести дополнительные электрические измерения, для чего приглашаются специалисты. Если грунт сухой, нужно использовать длинные электроды из-за плохой проводимости. Во влажном грунте поперечное сечение электродов следует брать как можно больше по причине повышенной коррозии.

Читайте также:  принцип работы автоматического выключателя
Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
moya-banya.ru
Добавить комментарий